Pular para o conteúdo principal

Questão sobre Análise Combinatória



Recentemente, um de meus ex-alunos enviou-me uma questão simples, mas bem interessante, sobre análise combinatória. Considero que os conceitos lógicos envolvidos no problema são bem importantes para ajudar outros alunos a solucionarem problemas do gênero e outros mais, afinal, são muitas as coisas em nossa vida que exigem o agrupamento/coleção de itens e suas diferentes maneiras de organizá-los.

Questão: Dez enxadristas participam de um campeonato em que todos jogam contra todos. Se um deles vence todas as partidas, quantas são as classificações possíveis para os três primeiros colocados?

Resposta: 72 maneiras diferentes.

A expressão que nos permite calcular esse resultado é simplesmente a fórmula que calcula o número de arranjos dos $n$ elementos de um conjunto que sejam tomados $k$ a $k$, ou seja, $$A_{n,k} = \frac{n!}{(n-k)!}$$ onde $n$ representa o número total de elementos e $k$, neste problema, representa a "restrição" que é imposta no enunciado da questão. Se colocarmos os valores da questão na expressão acima, tem-se $$A_{10,3} = \frac{10!}{(10-3)!}$$ que resulta em $$A_{10,3} = \frac{10!}{7!} = \frac{3.628.800}{5040} = 720$$ Percebam que esse não é o resultado correto! O erro neste problema consiste em substituir os valores na expressão sem antes analisar corretamente o enunciado. Vejam que o enunciado informa que um dos jogadores vence todas as partidas, portanto, este jogador, obviamente, ficará sempre na primeira colocação, ou seja, sua posição será fixa. Sendo assim, levando em conta apenas os três melhores colados, restam apenas duas posições (2º e 3º lugares).

Sendo assim, o valor correto para $n$ será 9, já que a primeira posição não se altera. Substituindo na expressão que calcula o número de arranjos, tem-se $$A_{9,2} = \frac{9!}{(9-2)!} = \frac{362.880}{5040} = 72$$ que é o resultado que desejávamos. 


Referência Bibliográfica

Iezzi, G., Dolce, O., Degenszajn, D., Périgo, R., & de Almeida, N. (2001). Matemática: ciência e aplicações.



Comentários

Postagens mais visitadas deste blog

Método de Separação de Variáveis (EDP's)

  Uma equação diferencial nada mais é do que uma equação que contém derivadas em seus termos. Existem dois tipos de equação diferencial: as equações diferenciais ordinárias , que são aquelas que possuem funções que dependem apenas de uma variável, e as equações diferenciais parciais , cujas funções dependem de mais de uma variável. A 2ª lei de Newton, que matematicamente é escrita como sendo $F = ma$, é um exemplo de equação diferencial. Considerando que a força é a derivada do momento linear em função do tempo e que a aceleração é a derivada da velocidade em relação ao tempo, podemos escrever a 2ª lei de Newton da seguinte forma: $$\frac{\, dp}{\, dt} = m\frac{\, dv}{\, dt}$$ onde a derivada no primeiro membro da equação representa a força resultante e a derivada no segundo membro representa a aceleração. A maioria dos problemas em física envolve a resolução de equações diferenciais. No entanto, dada a complexidade de modelagem dos fenômenos, o número de variáveis envolvidas pode ...

Resenha: Guia Politicamente Incorreto da Filosofia, de Luiz Felipe Pondé

  Autor: Luiz Felipe Pondé  Ano da edição: 2015 Páginas: 230 Gênero: Filosofia Acredito que esta resenha, assim como o conteúdo do livro, dispense grande parte da formalidade com a qual escrevo meus textos. Quem conhece o filósofo Luiz Felipe Pondé (figura abaixo) sabe a maneira como ele se expressa e escreve (geralmente com muitas pitadas de ironia e de forma um tanto leviana). Como é descrito pelo próprio autor, este livro não é uma obra sobre história da filosofia, mas sim um ensaio de filosofia do cotidiano. Mais especificamente, "é a confissão de um pecador irônico a respeito de uma mentira moral: o politicamente correto "(trecho retirado da contracapa). Sendo assim, o objetivo do livro é mostrar, seguindo a argumentação do autor, que o politicamente correto (ou "praga PC", como é descrito pelo próprio autor) é uma falácia intelectual e moral. Ao longo dos 25 capítulos, Pondé usa situações cotidianas, acompanhadas do pensamento de um determinado autor sobre o a...

Encontrando a equação da reta tangente à uma curva num ponto $x_0$

 Uma aplicação muito interessante sobre derivadas nos permite encontrar, de forma bastante simples, a equação da reta tangente à uma curva num dado ponto $(x_0,y_0)$. Neste texto, irei mostrar de forma muito simples como podemos encontrar a equação tangente à uma curva qualquer num certo ponto $x_0$. Observe o gráfico abaixo.                                             Fonte: respondeai.com.br/calculo O gráfico acima apresenta uma curva $f(x)$ e uma reta que tangencia essa curva no ponto $P$, que possui coordenadas $(x_0,y_0)$. Do cálculo diferencial e integral, sabemos que a inclinação da reta tangente com relação ao eixo $x$ representa a derivada de $f(x)$ com relação a variável $x$. A inclinação $m(x_0)$ da reta pode ser calculada por $$m = \frac{∆y}{∆x}=\frac{y-y_0}{x-x_0}$$ e, como a inclinação representa justamente a derivada, concluímos que $m(x_0) = f'(x_0)$ no pont...